

Best Practices for Maximizing IP Reuse in SoC, IC and FPGA Design

By Alex Tumanov, PhD.

IC Manage, Inc.

OVERVIEW

The ability to create differentiated products for
SoC, IC, and FPGA designs within narrow market
windows depends heavily on how effectively
design IP is reused in the design process.

This white paper covers best practices for
maximizing the efficient reuse of internal and
external IP from a data and design flow
integration perspective. It discusses core
development practices which lay the groundwork
for quality IP development, along with efficient
mechanisms for managing a company’s
dynamically changing IP across divergent design
teams and derivative designs.

IP Reuse best practices commence with the
partitioning of new design work into both logical
and functional modules suitable for later reuse.
One key component is establishing a change
management and IP delivery methodology which
utilizes virtual copies of the IP; this step enables
management of the interdependencies between
the various IP versions in use across multiple
chips and design teams. This virtual copy
approach replaces ad-hoc copying of IP data
around the enterprise.

This white paper also discusses the productivity
advantages of linking IP repositories with bug
tracking systems to enable bug tracing between
the original IP and all its versions. This step allows
for automated bug notification to chip leads and
IP owners to avoid taping out known design
errors.

Further efficiencies can be obtained by
establishing an automated check-list driven IP
development process and acceptance criteria.
Other IP logistics management practices include
instituting security protocols to reduce the risk of
theft from both internal and external sites.

SETTING UP IP DEVELOPMENT TO MAXIMIZE

LATER IP REUSE

Partition new design work into functional
modules.

The project manager or chip lead creates an initial
partitioning structure, and then assigns the
design modules/IP development to individual
designers or teams. This practice establishes the
various design modules as IP blocks, even when
their current reuse potential is not yet known.

The ideal practice is to define the design modules
in anticipation of the optimal reuse of each block.
The lead must strike a balance between creating
small modules, which have high flexibility as they
will not be further split during reuse, and
ensuring that each IP block contains a critical
mass of functionality, so it can be reused on its
own under certain conditions rather than always
needing to be combined with other modules. By
encouraging only selected team leaders and
architects to define the individual blocks and their
components, development organizations can
avoid complex instance trees and broken rules.

Organize each IP block according to data type.

Each IP design element is generally comprised of
mixed data types, including HDL, SPI, LIB, LEF/DEF,
SPF, and GDS. Setting up the IP block organization
by data type gives developers an infrastructure in
which to place their data files and sub-directories
rather than using ad-hoc trees which may be
difficult to package or release. Data type
partitioning also allows engineers to easily extract
specified data types, such as “Verilog and LIB
only”.

Put all new IP – internal and external - into the
IP repository.

Use scripts or other automated mechanisms to

check in, map, or import all IP - both new and
legacy - according to the partitioning, data type,
and repository structures discussed above.

Decouple the repository name space from the
actual disk hierarchy, so that disk structures can
be directly remapped. This practice avoids having
to change the repository structure, yet allows for
re-factoring of the hierarchy without breaking
scripts and flows.

Entering 3rd party IP into the same repository
structure allows easier integration of the new IP
into existing design flows to track and verify any
changes associated with updates from external
vendors.

Link the IP repository to a bug tracking system
from the start.

Integrate the IP repository to one or more bug
tracking systems - if a bug tracker is not already
embedded in the IP logistics management system.
Doing this step from the beginning ensures that
all identified bugs and bug fixes associated with
each IP block are automatically recorded in both
the bug tracking system and the IP repository.

This close linkage allows design and verification
teams to view and trace the bug history for every
IP they work with across all versions and designs.
The IP changes associated with the bug fixes
should be viewable in the bug tracking system,
and the bug history viewed in the IP repository.
Further, chip and IP designers should
automatically be notified of any new bugs
identified as well as the bug status. Bug fixes can
then be automatically or selectively propagated
to the various versions.

This practice allows the chip integration lead to
mark the IP blocks as ‘finished’, then decide
whether to let them stay finished after reviewing
the defects for a particular release. This
methodology allows the mix and match of
different versions of the same IP in different
blocks, without having to respin all blocks to use
the newest version.

Use an assembly methodology to capture IP
dependencies in a design.

Use structured techniques to define assembly
relationships between various IP and hierarchical
IP sub-modules. Configuring these assembly
relationships in advance allows for accurate, real-
time tracking and reporting of the where, what
and who of each IP version as it is used across the
enterprise.

Defining assembly relationships in advance
ensures that every item in the assembled IP
configuration is tracked in the design system from
the point of creation or import.

A defined assembly approach is in contrast to
manually creating after-the-fact linkages or a ‘bill
of materials’ (BOM). Since the BOM and
associated records are typically not created until
the end of the project, early visibility into project
dependencies are lost.

Finally, a defined configuration approach enables
the ability to deliver bug roll up reports for the
assembled design without having to copy the bug
report into each chip project. The heavy lifting
can be achieved automatically using the assembly
map rather than scripting and maintaining a
complex methodology or reverse tracking
through a static BOM.

EFFECTIVE USE OF BRANCHING

While creating new IP derivatives, use virtual
referencing techniques instead of copying the IP.

Clone the IP to create virtual copies through
pointers, so that each IP version can be separately
and independently tracked. This practice replaces
creating physical copies of different IP versions in
multiple repositories, leading to unrecognized
and orphan copies whose usage is unknown.
Maintaining the relationships between the
original IP and its derivative versions allows for
the efficient management and propagation of IP
updates in both directions - parent to child and
child to parent - depending on the policy.

Advanced branching with history tracking allows
top level assembly teams to work with stable or
released versions of each IP module while the
design teams continue to work on the IP and chip
development. By avoiding data duplication,
branching also minimizes storage space in the
repository.

Use private branching to manage IP block
derivatives within the same design.

Encourage designers and teams to use branching
for development on their individual IP modules,
and then merge their changes once their tasks are
completed. When using different versions of the
same IP module multiple times in the same
design, it is best to create re-named branches for
each IP version to ensure accurate tracking, and
to avoid name space collisions. The renamed
branches still carry the original history since they
are virtual projections rather than physical clones.

DEVELOPING QUALITY IP FOR REUSE

Establish the practice of continuous integration.

It is a best practice to merge new or changed IP
code into the IP repository with sufficient
frequency that developers collaborating on the
design or IP can notice errors and begin
correcting them immediately. The designer's
changes should be submitted as a single commit
operation using a repository that supports atomic
change list creation, and it should be easy for all
team members to view the latest deliverables and
changes.

Continuous integration forces ongoing team
member communication, reduces the number of
conflicts, and accelerates resolution. In contrast,
delayed or only periodically-scheduled check-ins
can make it more difficult to resolve development
conflicts.

Set up and utilize a checklist-driven flow during
IP development.

Encapsulate all relevant property data associated
with each IP element into the IP repository, such
as design data, bug status, assertions, constraints,

timing goal status, margins, power consumption,
electrical data, regressive results, and
documentation.

As the IP development and verification process
progresses, members of the design team involved
with the IP can mark or flag its status, based on
rules or metrics associated with the property list.
Quality or verification metrics can also be
imported or linked from third party tools. In
combination, these steps allow managers to
measure progress against specific milestones such
that certain property groups go from
“incomplete” to “in progress” to “pass”.

Optimize security access for IP blocks.

It is important to put security measures in place
to control user action and for file access control
for the IP block to protect the IP data and restrict
who can use certain blocks. The security
granularity can range from chip level to IP block
level down to the individual file.

In setting up the security structure, the
organization’s security needs must be balanced
with the development restrictions and overhead
associated with maintaining complex security
policies. One practical approach is to set general
policies using a fairly high granularity, then
modify and tighten the measures for specific
situations.

CONCLUSION

By establishing and deploying best practices for IP
creation and IP logistics management, organiza-
tions can highly leverage their company’s devel-
opment assets across the globe.

As seen in the figure below, today’s designs have
complex interdependencies to navigate, across
the original IP, its versions, and even the individu-
al hierarchical sub-modules for larger IP blocks.
For example it is critical to enable bug status visi-
bility and tracing between the original IP and all
its versions.

The design practices discussed above can form
the preliminary basis for a company’s IP reuse

https://en.wikipedia.org/wiki/Trunk_%28software%29

and logistics strategy; they can be further
adapted and extended to match the needs of
individual organizations. Dramatically reducing
the engineering time spent integrating internal
and third party IP into the design flow, and
minimizing the time to achieve confident

verification of the IP in the context of the entire
SoC, IC, and FPGA design, will enable broad
compliance by worldwide design and verification
teams.

About IC Manage IP Central

IC Manage IP Central is a platform for maximizing IP
reuse; it manages IP interdependencies and
automates IP logistics across the enterprise. Design
and verification teams can use IP Central to rapidly
publish and integrate IP into their existing design
flows, and to trace bug dependencies. Internal and
third party IP can be imported or linked to IP Central
from multiple commercial and open source design
management and internal revision control systems.
IP Central enables close collaboration between IP
owners, chip designers and chip leads.

About IC Manage

IC Manage, Inc. provides high performance design
management solutions for companies to efficiently
collaborate on single and multi-site designs and
obtain maximum IP reuse. The IC Manage Global
Design Platform (GDP) lets designers securely track
and distribute design, configuration, dependency,
and IP property data on multiple projects across the

globe. IC Manage’s IP Central is an IP logistics
platform for integrating, publishing, and managing IP
interdependencies. IC Manage is headquartered at
Suite 100, 15729 Los Gatos Blvd., Los Gatos, CA. For
more information visit us at www.icmanage.com.

Alex Tumanov, PhD, Manager, Applications
Engineering, IC Manage

Alex manages applications engineering at IC
Manage, where he has supported IC Manage’s
customers in structuring and implementing their IP
and design management systems. Prior to IC
Manage, Alex worked as management consultant at
McKinsey and Company. Alex was also a researcher
at Rice University and Stanford University, where he
developed an object-oriented data acquisition
software system to detect, simulate, and analyze
billions of interactions, built a particle detector
processor using programmable logic Xilinx chips, and
developed modules to analyze billions of interactions.
Alex received his M.S. and Ph.D. degrees from
Princeton University.

http://www.icmanage.com/

